Hash Values are the DNA of Digital Evidence
Computers & Technology → Technology
- Author Trent Walton
- Published October 15, 2023
- Word count 687
Identifying Suspects
Whether you like to watch true crime shows or not, you probably know that forensically matching a suspect to their DNA profile is one of the most reliable forms of identifying suspects there is. According to Wikipedia, when using Restriction Fragment Length Polymorphism (RFLP) to construct a DNA profile, the theoretical risk of a coincidental DNA match is 1 in 100 billion (100,000,000,000). That’s about 12 times the population of the earth! No wonder law enforcement uses DNA evidence to obtain convictions in criminal cases – it’s that unique as an identifier to tie suspects to the crime.
Hash values are even more unique than DNA and they can be useful to not only forensically authenticate electronic evidence, but also reduce the burden associated with eDiscovery significantly!
What are Hash Values?
A hash value is a numeric value of a fixed length that uniquely identifies data. That data can be as small as a single character to as large as a default size of 2 GB in a single file. Hash values represent large amounts of data as much smaller numeric values, so they are used as digital signatures to uniquely identify every electronic file in an ESI collection. An industry standard algorithm is used to create a hash value identification of each electronic file.
Hash values are typically represented as a hexadecimal number and the length of that number depends on the type of hash algorithm being used. A 32-digit hexadecimal number to represent the contents of a file might look something like this – ec55d3e698d289f2afd663725127bace – making each hash value extremely unique.
How unique? A 32-digit hexadecimal number like the one above has 340,282,366,920,938,463,463,374,607,431,768,211,456 potential combinations. That’s 340 undecillion 282 decillion 366 nonillion 920 octillion 938 septillion 463 sextillion 463 quintillion 374 quadrillion 607 trillion 431 billion 768 million 211 thousand 456!
Unique enough for you?
Types of Hash Values Typically Used in Discovery
There are many hash algorithms out there that can be used to represent data. Two algorithms have become standard within the eDiscovery industry:
Message-Digest algorithm 5 (MD5 Hash): Results in a 128-bit hash value which are represented as 32-digit hexadecimal numbers (like the example above).
Secure Hash Algorithm 1 (SHA-1): Results in a 160-bit hash value which are represented as 40-digit hexadecimal numbers.
It’s important to note that format of a file matters. Files with the same content but different formats (e.g., a Word document printed to PDF) will have different hash values. And, while the method may be industry standard, the manner in which an eDiscovery solution calculates either an MD5 Hash or a SHA-1 hash vary widely, based on implementation of the algorithm and the data and metadata used in generating the hash value. For example, emails have several metadata fields that could be used in generating hash value, including: SentDate, From, To, CC, BCC, Subject, Attachments (including embedded images) and text of the email.
This means that if you’re a party receiving a native production from opposing counsel that includes a separate metadata production with hash value as one of the metadata fields and you load it into your own eDiscovery solution, don’t expect the hash values to match (unless you’re both using the same solution, that is).
How Hash Values are Used in Discovery
Hash values have two primary functions in electronic discovery:
Evidence authentication: As illustrated above, hash values are extremely unique, making them equivalent to a digital “fingerprint” to represent the electronic file. Changing a single character in a file results in a change in hash value, so they are the best indicator of whether evidence has been tampered with.
Evidence authentication: As illustrated above, hash values are extremely unique, making them equivalent to a digital “fingerprint” to represent the electronic file. Changing a single character in a file results in a change in hash value, so they are the best indicator of whether evidence has been tampered with.
Conclusion
Just like law enforcement uses DNA to authenticate physical evidence at a crime scene, eDiscovery and forensic professionals use hash values to authenticate electronic evidence, which can be vitally important if there are disputes regarding the authenticity of the evidence in your case!
For more information about Forensic Discovery’s Computer Forensics services, read here: https://forensicdiscovery.expert/hash-values-are-the-dna-of-digital-evidence/
Article source: https://articlebiz.comRate article
Article comments
There are no posted comments.
Related articles
- The Ultimate Guide to 3D Animation: From Basics to Advanced Techniques
- Mitsubishi Electric proves heat pump compatibility with microbore pipework
- Why Small to Large Companies Continue to Use Dated/Dinosaur Technology
- 10 Ways Business Central’s Quality Inspector App Streamlines Quality Assurance
- 10 Ways Business Central’s Quality Inspector App Streamlines Quality Assurance
- The Rise of Sustainable Technology: Shaping a Greener Future
- Why Bullseye Engagement Offers the Best OKR Software for Businesses
- Web Development Companies in Canada
- How EasyPDF™ Forms Save Time & Money at Home and in the Workplace
- The One and Only 15-Second Digital Lien Waiver to Complete and Submit in Record Time Using the Free Adobe Reader
- The Impact of Employer Branding on Leadership Recruitment
- Augmented Reality (AR) in Business: Why Your Company Needs It
- Top 10 Reasons to Use Business Central’s License Plating App
- The Hidden Advantages of European Offshore Development Companies
- App Development: Transforming Ideas into Reality
- Automate you Chauffeur Service with A to Z Dispatch
- The Impact of Machine Learning and AI on Business: What the Future Holds In the modern busine
- Generate Flashcards Fast with AI: The Ultimate Solution for Developers
- Blockchain Interview Guide: Essential Questions and Answers for Success
- Eight Free Business Central Apps That You’ll Wish You Had
- How Artificial Intelligence (AI) and Machine Learning (ML) Are Transforming Computer-Based Trading Platforms
- The Role of Gas Engineers in Modern Energy Systems: Linking to Sustainability and Innovation
- The Significance of Stars in the Universe and Their Impact on Human Culture Throughout Evolution
- Exploiting Artificial Intelligence for Urban Mobility Transformation: A Case Study of Guatemala City
- Top 10 Ways Business Central Users Streamline Shipping
- The Impact of AI on Job Security and Availability in Africa: A Future at a Crossroads
- CNC Machining Vs 3D Printing: Which Technology Is Right For Your Project?
- The Future of Search: Embracing AI-Powered Search Solutions
- Low-Fidelity Vs High-Fidelity Prototypes: When To Use Each In Product Design
- MARKET SEGMENTATION