How Does Tidal Power Work?
- Author Denise Palmer
- Published July 13, 2007
- Word count 621
Tidal power traditionally involves erecting a dam across the opening to a tidal basin. The dam includes a sluice that is opened to allow the tide to flow into the basin; the sluice is then closed, and as the sea level drops, traditional hydropower technologies can be used to generate electricity from the elevated water in the basin. Some researchers are also trying to extract energy directly from tidal flow streams.
There are three basic ways to tap the ocean for its energy. We can use the ocean's waves, we can use the ocean's high and low tides, or we can use temperature differences in the water.
- Wave Energy
Kinetic energy (movement) exists in the moving waves of the ocean. That energy can be used to power a turbine. In this simple example, the wave rises into a chamber. The rising water forces the air out of the chamber. The moving air spins a turbine which can turn a generator. When the wave goes down, air flows through the turbine and back into the chamber through doors that are normally closed.
This is only one type of wave energy system. Others actually use the up and down motion of the wave to power a piston that moves up and down inside a cylinder. That piston can also turn a generator. Most wave-energy systems are very small. But, they can be used to power a warning buoy or a small light house.
For more information see: Ocean Energy Potential
- Tidal Energy
Another form of ocean energy is called tidal energy. When tides comes into the shore, they can be trapped in reservoirs behind dams. Then when the tide drops, the water behind the dam can be let out just like in a regular hydroelectric power plant. In order for this to work well, you need large increases in tides. An increase of at least 16 feet between low tide to high tide is needed. There are only a few places where this tide change occurs around the earth. Some power plants are already operating using this idea. One plant in France makes enough energy from tides to power 240,000 homes.
- Ocean Thermal Energy
The final ocean energy idea uses temperature differences in the ocean. If you ever went swimming in the ocean and dove deep below the surface, you would have noticed that the water gets colder the deeper you go. It's warmer on the surface because sunlight warms the water. But below the surface, the ocean gets very cold. That's why scuba divers wear wet suits when they dive down deep. Their wet suits trapped their body heat to keep them warm.
Power plants can be built that use this difference in temperature to make energy. A difference of at least 38 degrees Fahrenheit is needed between the warmer surface water and the colder deep ocean water. Using this type of energy source is called Ocean Thermal Energy Conversion or OTEC. It is being used in both Japan and in Hawaii in some demonstration projects.
Some of the oldest ocean energy technologies use tidal power. All coastal areas consistently experience two high and two low tides over a period of slightly greater than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be at least five meters, or more than 16 feet. There are only about 40 sites on the Earth with tidal ranges of this magnitude. If there is one thing we can safely predict and be sure of on this planet, it is the coming and going of the tide. This gives this form of renewable energy a distinct advantage over other sources that are not as predictable and reliable, such as wind or solar.
To read more about this topic, see the report http://www.energybusinessreports.com/shop/item.asp?itemid=294&affillink=denise
Article source: https://articlebiz.comRate article
Article comments
There are no posted comments.
Related articles
- A Tragic Loss in Montana’s Mining Industry
- An analysis of the Israel-Gaza conflict from the perspective of Nigeria by Palash Kausher
- Government Policies and the Promotion of Sustainable Energy
- The Smart Choice: Embracing Paper Cups for a Sustainable Future
- Stratospheric Aerosol Injection: A Reckless Gamble with Our Fragile Atmosphere
- Marine biodiversity observed on the great pacific garbage patch
- The Essential Purchase You Can Make to Support Local Businesses
- What’s the Hype around Bioheat® Fuel?
- The Best Perk of Bioheat® Fuel: New York’s Sustainable Energy Blend
- The Very Real Reasons Bioheat® Fuel Is Better, Cleaner & Safer for the Environment
- Are Waste & Compliance Eating Your Profits? One Simple Shift Can Save Your Small Manufacturing Business
- Green hydrogen: Europe’s new hope for energetic sovereignty and industrial innovation
- 10 Unsung Towns Shaping the Future of Sustainability.
- Nairobi: A City Drowning in its Own Waste - A Call to Collective Action
- The Significant Role of Women in Advancing Clean Energy in Nigeria
- Just Stop Oil: The controversial activist group who demand a greener future
- The Benefits of Streetlights
- The Chilling Truth: How Air Conditioning Feeds into World Hunger
- Shifting from Fossil Fuels to Renewable Energy – Using Sustainable Technologies
- Nigeria's Stride Towards Refined Oil: A Milestone in Energy Evolution
- Elimination of Species: An Argumentative View
- Plastic Pollution and the Importance of Plastic Recycling
- OCEAN ICE DROPS TO 'DISTURBING' LEVELS IN THE ANTARCTIC: 'EVERYBODY OUGHT TO BE CONCERNED'
- preventing your roof against hurricane season
- Sustainable buildings: the role of real estate development in environmental conservation
- Methane, a Significant Environmental Problem.
- 7 Effective Ways to Save Our Environment
- Harnessing the Potential of AI for a Sustainable Future
- Save our forests
- Impact Investing for Social and Environmental Challenges